Chapter 4
 Lecture 2
 Two body central Force Problem

Alkhlaq Hussain
4.3 Equation of Motion for a body under the action of central force and First Integrals

Consider a conservative, where force can be drivable from potential " $\mathrm{V}_{(r)}$ ".
The problem has spherical symmetry \& angular momentum ($\boldsymbol{l}=\boldsymbol{r} \times \boldsymbol{P}$) conserved.
Lagrangian of the system $L=T-V=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-V_{(r)}$
Using Lagrange's equation $\quad \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=0$

$$
\begin{array}{cc}
\text { And } \frac{\partial L}{\partial \dot{\theta}}=P_{\theta}=\mu r^{2} \dot{\theta}, \quad \text { and } & \frac{\partial L}{\partial \theta}=0 \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=\frac{d}{d t}\left(\mu r^{2} \dot{\theta}\right)=0 &
\end{array}
$$

$$
(4.3 .2)^{m_{2}}
$$

$$
\begin{equation*}
\Rightarrow\left(\mu r^{2} \dot{\theta}\right)=P_{\theta}=\boldsymbol{l}=\text { constant } \tag{4.3.3}
\end{equation*}
$$

Eq. (4.3.3) is first integral of motion

m_{1}
4.3 Equation of Motion for a body under the action of central force and First Integrals

$$
\begin{equation*}
\frac{d A}{d t}=\frac{d}{d t}\left(\frac{1}{2} r^{2} \dot{\theta}\right)=0 \Rightarrow A=\left(\frac{1}{2} r^{2} \dot{\theta}\right)=\left(\frac{l}{2 \mu}\right)=\text { constant } \tag{4.3.4}
\end{equation*}
$$

Thus, the areal velocity is constant in time. (Kepler's Second Law)

- Areal velocity conservation is a general property of central force motion
- It is not restricted to the inverse-square law force involved in planetary motion.

Lagrange's equation for radial part
$\frac{d}{d t} \frac{\partial L}{\partial \dot{r}}-\frac{\partial L}{\partial r}=\frac{d}{d t}(\mu \dot{r})-\mu r \dot{\theta}^{2}+\frac{\partial V}{\partial r}=0$
$\mu \ddot{r}-\mu r \dot{\theta}^{2}+\frac{\partial V}{\partial r}=0$
Since $f_{(r)}=-\frac{\partial V}{\partial r} \& \dot{\theta}=\frac{l}{\mu r^{2}}\{$ from(4.3.3) $\}$, Therefore, Eq. (4.3.5)
Since $\Rightarrow \mu \ddot{r}-\frac{L^{2}}{\mu r^{3}}=f(r)$
4.3 Equation of Motion for a body under the action of central force and First Integrals

$$
\Rightarrow \mu \ddot{r}=\frac{\boldsymbol{l}^{2}}{\mu r^{3}}-\frac{\partial V}{\partial r}=-\frac{\partial}{\partial r}\left(\frac{\boldsymbol{l}^{2}}{2 \mu r^{2}}+V\right)
$$

Multiplying Both sides with " $\dot{r} " \quad \Rightarrow \mu \dot{r} \ddot{r}=-\dot{r} \frac{\partial}{\partial r}\left(\frac{l^{2}}{2 \mu r^{2}}+V\right)$

$$
\begin{align*}
& \Rightarrow \frac{d}{d t}\left(\frac{1}{2} \mu \dot{r}^{2}\right)=-\frac{d r}{d t} \frac{\partial}{\partial r}\left(\frac{l^{2}}{2 \mu r^{2}}+V\right)=-\frac{d}{d t}\left(\frac{l^{2}}{2 \mu r^{2}}+V\right) \\
& \Rightarrow \frac{d}{d t}\left(\frac{1}{2} \mu \dot{r}^{2}+\frac{l}{2 \mu r^{2}}+V\right)=0 \\
& \Rightarrow \frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V=\text { Constant } \tag{4.3.8}\\
& E=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \frac{l^{2}}{\mu r^{2}}+V_{(r)} \tag{4.3.10}
\end{align*}
$$

From eq. (4.3.8) and Eq. (4.3.10), total energy of a body under the action of central force is constant.

4.4 First Integral

The Angular momentum, of the system is

$$
\begin{gather*}
\boldsymbol{l}=\mu r^{2} \dot{\theta} \\
\Rightarrow \dot{\theta}=\frac{\boldsymbol{l}}{\mu r^{2}} \Rightarrow \frac{d \theta}{d t}=\frac{\boldsymbol{l}}{\mu r^{2}} \\
\Rightarrow d \theta=\frac{\boldsymbol{l}}{\mu r^{2}} d t \tag{4.4.1}
\end{gather*}
$$

Integrating above equation $\Rightarrow \int_{\theta_{o}}^{\theta} d \theta=\int_{0}^{t} \frac{l}{\mu r^{2}} d t$
Now the total energy of a body moving under central force is given by

$$
\begin{align*}
& E=T+V=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \frac{l^{2}}{\mu r^{2}}+V_{(r)} \tag{4.4.3}\\
& \Rightarrow \dot{r}=\sqrt{\frac{2}{\mu}\left(E-\frac{\boldsymbol{l}^{2}}{2 \mu r^{2}}-V_{(r)}\right)} \tag{4.4.4}
\end{align*}
$$

4.4 First Integral

$$
\begin{aligned}
& \Rightarrow \frac{d r}{d t}=\sqrt{\frac{2}{\mu}\left(E-\frac{\boldsymbol{l}^{2}}{\mu r^{2}}-V_{(r)}\right)} \\
& \Rightarrow t=\int_{r_{o}}^{r} \frac{d r}{\sqrt{\frac{2}{\mu}\left(E-\frac{\boldsymbol{l}^{2}}{2 \mu r^{2}}-V_{(r)}\right)}}
\end{aligned}
$$

Eq. (4.4.1) \& Eq. (4.4.5) are known as first integral for the motion in central force field. where $\boldsymbol{l}, \mathrm{E}, \theta_{o}$ and r_{o} must be known initially.

Eq. (4.4.1) \& Eq. (4.4.5) gives " r " and " θ " in terms of t . We are often interested to find " θ " in terms of " r " which will determine the shape of the orbit of the body.

4.4 First Integral

$$
\begin{align*}
& \text { Since } \frac{d \theta}{d t}=\frac{\boldsymbol{l}}{\mu r^{2}} \quad \Rightarrow \frac{d \theta}{d t} \frac{d r}{d r}=\frac{\boldsymbol{l}}{\mu r^{2}} \\
& \Rightarrow d \theta=\frac{\boldsymbol{l}}{\mu r^{2} \dot{r}} d r \tag{4.4.6}
\end{align*}
$$

From Eq. (4.4.4) we know that

$$
\begin{align*}
& \dot{r}=\sqrt{\frac{2}{\mu}\left(E-\frac{\boldsymbol{l}^{2}}{\mu r^{2}}-V_{(r)}\right)} \tag{4.4.7}\\
& \Rightarrow d \theta=\frac{\boldsymbol{l}}{\mu r^{2} \sqrt{\frac{2}{\mu}\left(E-\frac{\boldsymbol{l}^{2}}{\mu r^{2}}-V_{(r)}\right)}} d r \\
& \Rightarrow \theta=\theta_{o}+\int_{r_{o}}^{r} \frac{\boldsymbol{l}_{r^{2}}}{\sqrt{2 \mu\left(E-\frac{\boldsymbol{l}^{2}}{2 \mu r^{2}}-V_{(r)}\right)}} d r \tag{4.4.8}
\end{align*}
$$

Eq. 47 gives " θ " in terms of " r " which determine the shape of the orbit of the body under the action of central force field.

4.5 General Features of Motion Under Central Force

$$
\left\{\begin{array}{c}
\mu\left(\ddot{r}-r \dot{\theta}^{2}\right)=F_{r} \tag{4.5.1}\\
\mu(r \ddot{\theta}+2 \dot{r} \dot{\theta})=F_{\theta}
\end{array}\right.
$$

The tangential component " F_{θ} " is zero because the force is radial

$$
\begin{align*}
& \mu\left(\ddot{r}-r \dot{\theta}^{2}\right)=F_{r} \\
& \Rightarrow \mu \ddot{r}=F_{r}+\mu r \dot{\theta}^{2} \\
& \Rightarrow \mu \ddot{r}=F_{r}+\frac{l^{2}}{\mu r^{3}} \tag{4.5.2}
\end{align*}
$$

$\frac{L^{2}}{\mu r^{3}}$ is known as centrifugal force. It is a pseudo or false force since it does not arise from the interaction between the particles in the orbit. It appears due to accelerated motion of the body.
Since $\boldsymbol{l}^{2}=\mu^{2} r^{4} \dot{\theta}^{2} \Rightarrow \frac{l^{2}}{\mu r^{3}}=\mu r \dot{\theta}^{2}=\frac{\mu\left(r^{2} \dot{\theta}^{2}\right)}{r}=\frac{\mu v^{2}}{r}$ or $\frac{m v^{2}}{r}$

4.5 General Features of Motion Under Central Force

" $\mu \ddot{r} "$ is the effective force responsible for the motion and can be derived from potential " $\mathrm{V}_{\mathrm{eff}}$ "

$$
\begin{equation*}
\mu \ddot{r}=-\frac{d V_{e f f}}{d r} \tag{4.5.3}
\end{equation*}
$$

Therefore Eq. (4.5.2) can be written as
$-\frac{d V_{e f f}}{d r}=F_{r}+\frac{\boldsymbol{l}^{2}}{\mu r^{3}} \quad \Rightarrow V_{e f f}=-\int\left(-\frac{d V}{d r}+\frac{\boldsymbol{l}^{2}}{\mu r^{3}}\right) d r^{\frac{\text { an }}{}}$
$\Rightarrow V_{e f f}=V+\frac{\boldsymbol{l}^{2}}{2 \mu r^{2}}$ (4.5.4)

For an inverse square law (gravitational or electrostatic force)

$$
\begin{equation*}
F_{r}=-\frac{k}{r^{2}} \Rightarrow V=-\frac{k}{r} \tag{4.5.5}
\end{equation*}
$$

Therefore, $\quad V_{e f f}=-\frac{k}{r}+\frac{l^{2}}{2 \mu r^{2}}$
Note that the centrifugal potential reduces the effect of the inverse square law

4.5 General Features of Motion Under Central Force

Not the total energy of the system is

$$
\begin{align*}
E & =\frac{1}{2} \mu \dot{r}^{2}+V_{e f f} \\
\Rightarrow \dot{r} & =\sqrt{\frac{2}{\mu}\left(E-V_{e f f}\right)} \tag{4.5.6}
\end{align*}
$$

The centrifugal part gives a repulsive potential while the inverse square law part gives an attractive potential.

Centrifugal part decreases much faster with distance " r " as compared to the inverse square attractive part. The combine potential is given as the $\mathrm{V}_{\text {eff }}$ which decrease sharply from positive value to negative and then increase with r . The $\mathrm{V}_{\text {eff }}$ approaches to zero value at infinite value of r.

4.6 Motion in arbitrary potential Field

Let an arbitrary potential $V_{\text {eff }}$ which may or may not be same as the real problem and it might appear in different problems. The Energy and potential ${ }^{E}$ curves intersect at " r_{1} ", " r_{2} " and " r_{3} ".

$$
\begin{equation*}
E=V_{e f f} \tag{4.6.1}
\end{equation*}
$$

And $\quad \frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}=0 \quad \& \quad \dot{r}=0$
The curve can be divided into three regions.

Region for $r<r_{1}$

$E<V_{e f f}$
$\& T=\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}<0$

4.6 Motion in arbitrary potential Field

Region for $r_{1}<r<r_{2}$

In this region $E>V_{e f f}$
for $r<r_{1}$ and $r_{2}<r$,
The kinetic energy $\mathrm{T}=\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}<0$

Which is not possible therefore the body will turn back on r_{1} and r_{2}.

Region for $\boldsymbol{r}_{\mathbf{2}}<\boldsymbol{r}<\boldsymbol{r}_{\mathbf{3}}$
In this region $E<V_{e f f}$
$\& T=\frac{1}{2} \mu \dot{r}^{2}<0$ Therefore, the motion
 in this region is not possible.

4.6 Motion in arbitrary potential Field

Region for $\boldsymbol{r}>\boldsymbol{r}_{\mathbf{3}}$

Turning point is $r=r_{3}$.
The particle approaches to r_{3} and rebounded.

$$
\begin{align*}
& E=T+V_{e f f}=0 \Rightarrow T=-V_{e f f} \\
& \dot{r}=\sqrt{\frac{2}{\mu}\left(-V_{e f f}\right)} \tag{4.6.3}
\end{align*}
$$

$\dot{r}=$ escape velocity; the initial velocity required to escape from the potential field $V_{e f f}$.

The nature of motion of the particle discussed earlier with help of arbitrary potential will help to understand the nature of orbit.

4.7 Motion in Inverse Square Law Force Field

$$
\begin{align*}
& F_{r}=\frac{k}{r^{2}} \tag{4.7.1}\\
& \Rightarrow V_{r}=\frac{k}{r} \tag{4.7.2}
\end{align*}
$$

Therefore, the effective potential $V_{e f f}$ is given by

$$
\begin{equation*}
V_{e f f}=\frac{k}{r}+\frac{l^{2}}{2 \mu r^{2}} \tag{4.7.3}
\end{equation*}
$$

The value of " k " depends on the nature of physical problem. For example,
i) gravitational force between two spherical bodies of mass m_{1} and m_{2}

$$
\begin{equation*}
k=-G m_{1} m_{2} \tag{4.7.4}
\end{equation*}
$$

ii) Electrostatic force

$$
\begin{equation*}
k=\frac{q_{1} q_{2}}{4 \pi \epsilon_{o}} \tag{4.7.5}
\end{equation*}
$$

The nature of the orbit depends on sign of " k ". If $k>0 \Rightarrow$ repulsive \& for $k<0 \Rightarrow$ attractive.

4.7 Motion in Inverse Square Law Force Field

If effective potential $V_{\text {eff }}$ is plotted against " r " for different values of " k " and "L" following curves are obtained.
Case I

$$
k>0, l>0
$$

Case II

$$
k>0, l=0
$$

Case III $\quad k=0, l>0$
Case IV $\quad k<0, \boldsymbol{l}>\mathbf{0}$
Case V $\quad k<0, l=0$

These curves can be very helpful in understanding the nature of the orbit.

A body with total energy $E>V_{\text {eff }}$ approaching to the centre of force from infinite distance. The particle will be deflected as given in figure.

4.7 Motion in Inverse Square Law Force Field

(1) For $E_{\underline{l}} \underline{a t} r=r_{\underline{l}}$

$$
E_{1}=V_{e f f}=-\frac{k}{r}+\frac{l^{2}}{2 \mu r^{2}}
$$

Turning point at $r=r_{1}$.
Motion represents scattering, where body is not bound to the centre and deflected away.
(ii) $\underline{\text { For } E_{2}}=0$

Possible roots are $r=r_{1}^{\prime}$ and $r=\infty$. The particle moves away \& radial velocity fall continuously.
(iii) For $E_{3} \leq 0$

Two roots $r=r_{2}$ and $r=r_{3}$ of equation are real and distinct.

4.7 Motion in Inverse Square Law Force Field

(iv) $\underline{\text { For } \boldsymbol{E}_{4}}=\boldsymbol{V}_{\text {eff }}$,
which is tangent of the potential energy curve.
Therefore

$$
\begin{aligned}
& \frac{d V_{e f f}}{d r}=0 \\
& \Rightarrow \frac{d V}{d r}-\frac{l^{2}}{\mu r^{3}}=0 \\
& \Rightarrow F_{r}=-\frac{d V}{d r}=-\frac{l^{2}}{\mu r^{3}}=-\mu r \dot{\theta}^{2} \\
& \Rightarrow F_{r}=-\frac{\mu r^{2} \dot{\theta}^{2}}{r}=-\frac{\mu v^{2}}{r}
\end{aligned}
$$

Thus F_{r} is equal to the centrifugal force required to maintain circular motion of the body around the centre of the force. Thus F_{r} is centripetal force that maintain the orbit.

4.9 Show That:

$$
\text { a) } v^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}=h^{2}\left(\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right)
$$

b) Using results from part " a " also prove that the conservation of energy equation will be $\left(\frac{d u}{d \theta}\right)^{2}+u^{2}=\frac{2(E-V)}{\mu h^{2}}$ if $u=\frac{1}{r}$

Solution: Let us consider a particle of mass " μ " and position vector " \boldsymbol{r} ".
Since $u=\frac{1}{r} \Rightarrow r=\frac{1}{u}$
$\frac{d r}{d t}=-\frac{1}{u^{2}} \frac{d u}{d t}-\frac{1}{u^{2}} \frac{d u}{d \theta} \frac{d \theta}{d t}$
$\Rightarrow \dot{r}=-r^{2} \dot{\theta} \frac{d u}{d \theta} \Rightarrow \dot{r}=-h \frac{d u}{d \theta}$
Therefore, $v^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$
$\Rightarrow v^{2}=\left(-h \frac{d u}{d \theta}\right)^{2}+\frac{1}{u^{2}}\left(h u^{2}\right)^{2}=h\left(\frac{d u}{d \theta}\right)^{2}+h^{2} u^{2}$
$\Rightarrow v^{2}=h^{2}\left(\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right)$

$$
\begin{align*}
& \text { Since } \quad E=T+V \Rightarrow T=E-V \\
& \Rightarrow \frac{1}{2} \mu v^{2}=E-V \\
& \Rightarrow \frac{1}{2} \mu h^{2}\left(\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right)=E-V \\
& \Rightarrow\left(\frac{d u}{d \theta}\right)^{2}+u^{2}=\frac{2(E-V)}{\mu h^{2}} \tag{4.9.2}
\end{align*}
$$

Eq. (4.9.1) and Eq. (4.9.2) are as desired.

Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic spiral orbit given by $r=k e^{\alpha \theta}$, where "k" and " α " are constants. Also find value of $\boldsymbol{\theta}_{(t)}$ and $r_{(t)}$. Also find Energy of the orbit.
Solution. Since we have verified that
$\left(\frac{d^{2} u}{d \theta^{2}}+u\right)=-\frac{\mu f_{\left(\frac{1}{u}\right)}}{l^{2} u^{2}}$
$\left(\frac{d^{2} u}{d \theta^{2}}+u\right)=-\frac{\mu r^{2} f_{(r)}}{l^{2}}$
Now using
$r=k e^{\alpha \theta} \Rightarrow \frac{1}{r}=\frac{1}{k} e^{-\alpha \theta}$
Differentiating Twice with respect to θ
$\frac{d^{2}}{d \theta^{2}}\left(\frac{1}{r}\right)=\frac{\alpha^{2}}{k} e^{-\alpha \theta}$
$\Rightarrow \frac{d^{2} u}{d \theta^{2}}=\frac{\alpha^{2}}{k} e^{-\alpha \theta}=\alpha^{2} u$
Putting value of u and $\frac{d^{2} u}{d \theta^{2}}$ in equation 1
$\left(\frac{d^{2} u}{d \theta^{2}}+u\right)=-\frac{\mu r^{2} f(r)}{l^{2}}$
$\Rightarrow \alpha^{2} u+u=-\frac{\mu r^{2} f_{(r)}}{l^{2}}$
$\Rightarrow f_{(r)}=-\frac{l^{2}}{\mu r^{3}}\left(\alpha^{2}+1\right)$
Eq. 3 represents the force responsible for motion.
Now the central potential responsible for the motion of the particle will be

$$
\begin{equation*}
V=-\int f_{(r)} d r=-\frac{l^{2}}{2 \mu r^{2}}\left(\alpha^{2}+1\right) \tag{4}
\end{equation*}
$$

Total energy of the system is
$E=T+V=\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V$
Now
$\dot{r}=\frac{d r}{d \theta} \frac{d \theta}{d t}$
$\dot{r}=\frac{d r}{d \theta} \dot{\theta}=\frac{d r}{d \theta} \frac{l}{\mu r^{2}}$
$\dot{r}=k \alpha e^{\alpha \theta} \frac{l}{\mu r^{2}}=r \alpha \frac{l}{\mu r^{2}}$
$\dot{r}=\alpha \frac{l}{\mu r}$

Now

$$
E=T+V=\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V
$$

$\Rightarrow E=\frac{1}{2} \mu\left(\frac{l \alpha}{\mu r}\right)^{2}+\frac{l^{2}}{2 \mu r^{2}}-\frac{l^{2}}{2 \mu r^{2}}\left(\alpha^{2}+1\right)$
$\Rightarrow E=\frac{l^{2}}{2 \mu r^{2}}\left(\alpha^{2}+1\right)-\frac{l^{2}}{2 \mu r^{2}}\left(\alpha^{2}+1\right)=0$
Eq. 7 gives the total energy of the system. Zero value of the system represent a bound system.
Now we will determine of $\theta_{(t)}$ and $r_{(t)}$
Since $\dot{\theta}=\frac{l}{\mu r} \Rightarrow \frac{d \theta}{d t}=\frac{l}{\mu r}$
$\frac{d \theta}{d t}=\frac{l}{\mu k^{2} e^{2 \alpha \theta}} \Rightarrow e^{2 \alpha \theta} d \theta=\frac{l}{\mu k^{2}} d t$
Integrating both sides we get $\frac{e^{2 \alpha \theta}}{2 \alpha}=\frac{l t}{\mu k^{2}}+C$
$e^{2 \alpha \theta}=2 \alpha\left(\frac{l t}{\mu k^{2}}+C\right) \Rightarrow \theta_{(t)}=\frac{1}{2 \alpha} \ln \left[2 \alpha\left(\frac{l t}{\mu k^{2}}+C\right)\right]$
Now $r=k e^{\alpha \theta}$
$\Rightarrow \frac{r}{k}=e^{\alpha \theta} \Rightarrow \frac{r^{2}}{k^{2}}=e^{2 \alpha \theta}$
$\Rightarrow \frac{r^{2}}{k^{2}}=2 \alpha\left(\frac{l t}{\mu k^{2}}+C\right) \Rightarrow r_{(t)}=\sqrt{2 \alpha k^{2}\left(\frac{l t}{\mu k^{2}}+C\right)}$

