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Consider a conservative, where force can be drivable from potential “V(r)”.

The problem has spherical symmetry & angular momentum (𝒍 = 𝒓 × 𝑷) conserved.

Lagrangian of the system 𝐿 = 𝑇 − 𝑉 =
1

2
𝜇 ሶ𝑟2 + 𝑟2 ሶ𝜃2 − 𝑉 𝑟 (4.3.1)

Using Lagrange’s equation
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

4.3 Equation of Motion for a body under the action of central force and First 

Integrals

2Eq. (4.3.3) is first integral of motion

And
𝜕𝐿

𝜕 ሶ𝜃
= 𝑃𝜃 = 𝜇𝑟2 ሶ𝜃, and

𝜕𝐿

𝜕𝜃
= 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
=

𝑑

𝑑𝑡
𝜇𝑟2 ሶ𝜃 = 0 (4.3.2)

⇒ 𝜇𝑟2 ሶ𝜃 = 𝑃𝜃 = 𝒍 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.3.3)



𝑑𝐴

𝑑𝑡
=

𝑑

𝑑𝑡

1

2
𝑟2 ሶ𝜃 = 0⇒𝐴 =

1

2
𝑟2 ሶ𝜃 =

𝑙

2𝜇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.3.4)

Thus, the areal velocity is constant in time. (Kepler’s Second Law)

Lagrange’s equation for radial part

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
=

𝑑

𝑑𝑡
𝜇 ሶ𝑟 − 𝜇𝑟 ሶ𝜃2 +

𝜕𝑉

𝜕𝑟
= 0

𝜇 ሷ𝑟 − 𝜇𝑟 ሶ𝜃2 +
𝜕𝑉

𝜕𝑟
= 0 (4.3.5)

Since 𝑓(𝑟) = −
𝜕𝑉

𝜕𝑟
& ሶ𝜃 =

l
𝜇𝑟2

{from(4.3.3)}, Therefore, Eq. (4.3.5)

• Areal velocity conservation is a general property of central force motion

• It is not restricted to the inverse-square law force involved in planetary motion.
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4.3 Equation of Motion for a body under the action of central force and First 

Integrals

Since ⇒ 𝜇 ሷ𝑟 −
𝐿2

𝜇𝑟3
= 𝑓(𝑟) (4.3.7)



⇒ 𝜇 ሷ𝑟 =
l2

𝜇𝑟3
−

𝜕𝑉

𝜕𝑟
= −

𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉

Multiplying Both sides with “ ሶ𝑟” ⇒ 𝜇 ሶ𝑟 ሷ𝑟 = − ሶ𝑟
𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉

𝐸 =
1

2
𝜇 ሶ𝑟2 +

1

2

l2

𝜇𝑟2
+ 𝑉 𝑟 (4.3.10)

From eq. (4.3.8) and Eq. (4.3.10), total energy of a body under the action of central

force is constant.
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4.3 Equation of Motion for a body under the action of central force and First 

Integrals

⇒
𝑑

𝑑𝑡

1

2
𝜇 ሶ𝑟2 = −

𝑑𝑟

𝑑𝑡

𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉 = −

𝑑

𝑑𝑡

l2

2𝜇𝑟2
+ 𝑉

⇒
𝑑

𝑑𝑡

1

2
𝜇 ሶ𝑟2 +

l
2𝜇𝑟2

+ 𝑉 = 0

⇒
1

2
𝜇 ሶ𝑟2 +

l2

2𝜇𝑟2
+ 𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.3.8)



The Angular momentum, of the system is

l = 𝜇𝑟2 ሶ𝜃

⇒ ሶ𝜃 =
l

𝜇𝑟2
⇒

𝑑𝜃

𝑑𝑡
=

l
𝜇𝑟2

⇒ 𝑑𝜃 =
l

𝜇𝑟2
𝑑𝑡

Integrating above equation ⇒ 𝜃𝑜׬
𝜃
𝑑𝜃 = 0׬

𝑡 l
𝜇𝑟2

𝑑𝑡 (4.4.1)

Now the total energy of a body moving under central force is given by

𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

1

2

l2

𝜇𝑟2
+ 𝑉 𝑟 (4.4.3)

⇒ ሶ𝑟 =
2

𝜇
𝐸 −

l2

2𝜇𝑟2
− 𝑉 𝑟 (4.4.4)
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4.4 First Integral



⇒
𝑑𝑟

𝑑𝑡
=

2

𝜇
𝐸 −

l2

𝜇𝑟2
− 𝑉 𝑟

⇒ 𝑡 = 𝑟𝑜׬
𝑟 𝑑𝑟

2

𝜇
𝐸−

l2
2𝜇𝑟2

−𝑉 𝑟

(4.4.5)

Eq. (4.4.1) & Eq. (4.4.5) are known as first integral for the motion in central force

field. where l , E, 𝜃𝑜 and 𝑟𝑜must be known initially.

Eq. (4.4.1) & Eq. (4.4.5) gives “𝑟” and “𝜃” in terms of t. We are often interested to

find “𝜃” in terms of “𝑟” which will determine the shape of the orbit of the body.
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4.4 First Integral



Since
𝑑𝜃

𝑑𝑡
=

l
𝜇𝑟2

⇒
𝑑𝜃

𝑑𝑡

𝑑𝑟

𝑑𝑟
=

l
𝜇𝑟2

⇒ 𝑑𝜃 =
l

𝜇𝑟2 ሶ𝑟
𝑑𝑟 (4.4.6)

From Eq. (4.4.4) we know that

ሶ𝑟 =
2

𝜇
𝐸 −

l2

𝜇𝑟2
− 𝑉 𝑟 (4.4.7)

⇒ 𝑑𝜃 =
l

𝜇𝑟2
2

𝜇
𝐸−

l2
𝜇𝑟2

−𝑉 𝑟

𝑑𝑟

⇒ 𝜃 = 𝜃𝑜 + 𝑟𝑜׬
𝑟 ൗl

𝑟2

2𝜇 𝐸−
l2

2𝜇𝑟2
−𝑉 𝑟

𝑑𝑟 (4.4.8)
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4.4 First Integral

Eq. 47 gives “𝜃” in terms of “𝑟” which determine the shape of the orbit of the body 

under the action of central force field.



𝐿2

𝜇𝑟3
is known as centrifugal force. It is a pseudo or false force since it does not arise from the

interaction between the particles in the orbit. It appears due to accelerated motion of the body.

Since l2 = 𝜇2𝑟4 ሶ𝜃2

4.5 General Features of Motion Under Central Force
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ቐ
𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 = 𝐹𝑟

𝜇 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 = 𝐹𝜃
(4.5.1)

The tangential component “𝐹𝜃” is zero because the force is radial

𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 = 𝐹𝑟

⇒ 𝜇 ሷ𝑟 = 𝐹𝑟 + 𝜇𝑟 ሶ𝜃2

⇒ 𝜇 ሷ𝑟 = 𝐹𝑟 +
l2

𝜇𝑟3
(4.5.2)

⇒
l2

𝜇𝑟3
= 𝜇𝑟 ሶ𝜃2 =

𝜇 𝑟2 ሶ𝜃2

𝑟
=

𝜇𝑣2

𝑟
or

𝑚𝑣2

𝑟



“𝜇 ሷ𝑟” is the effective force responsible for the motion and can be derived from potential “Veff”

𝜇 ሷ𝑟 = −
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
(4.5.3)

Therefore Eq. (4.5.2) can be written as

−
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
= 𝐹𝑟 +

l2

𝜇𝑟3
⇒ 𝑉𝑒𝑓𝑓 = ׬− −

𝑑𝑉

𝑑𝑟
+

l2

𝜇𝑟3
𝑑𝑟

⇒ 𝑉𝑒𝑓𝑓 = 𝑉 +
l2

2𝜇𝑟2
(4.5.4)

𝐹𝑟 = −
𝑘

𝑟2
⇒𝑉 = −

𝑘

𝑟

Therefore, 𝑉𝑒𝑓𝑓 = −
𝑘

𝑟
+

l2

2𝜇𝑟2
(4.5.5)

For an inverse square law (gravitational or electrostatic force)

Note that the centrifugal potential reduces the effect of the inverse square law 9

4.5 General Features of Motion Under Central Force



Not the total energy of the system is

𝐸 =
1

2
𝜇 ሶ𝑟2 + 𝑉𝑒𝑓𝑓

⇒ ሶ𝑟 =
2

𝜇
𝐸 − 𝑉𝑒𝑓𝑓 (4.5.6)

The centrifugal part gives a repulsive potential while the inverse square law part gives

an attractive potential.

Centrifugal part decreases much faster with distance “r” as compared to the inverse

square attractive part. The combine potential is given as the Veff which decrease

sharply from positive value to negative and then increase with r. The Veff approaches to

zero value at infinite value of r.
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4.5 General Features of Motion Under Central Force



Let an arbitrary potential Veff which may or may not

be same as the real problem and it might appear in

different problems. The Energy and potential

curves intersect at “𝑟1”, “𝑟2” and “𝑟3”.

4.6 Motion in arbitrary potential Field

The curve can be divided into three regions.

𝐸 = 𝑉𝑒𝑓𝑓 (4.6.1)

Region for 𝒓 < 𝒓𝟏

𝐸 < 𝑉𝑒𝑓𝑓 (4.6.2)

& 𝑇 =
1

2
𝜇 ሶ𝒓2 < 0

& velocity has imaginary value. Hence motion in this region is not possible. 11

And
1

2
𝜇 ሶ𝒓2 = 0 & ሶ𝑟 = 0



Region for 𝒓𝟏 < 𝒓 < 𝒓𝟐

In this region 𝐸 > 𝑉𝑒𝑓𝑓

for 𝑟 < 𝑟1and 𝑟2 < 𝑟,

The kinetic energy T =
1

2
𝜇 ሶ𝒓2< 0

Region for 𝒓𝟐 < 𝒓 < 𝒓𝟑

In this region 𝐸 < 𝑉𝑒𝑓𝑓

& 𝑇 =
1

2
𝜇 ሶ𝒓2 < 0 Therefore, the motion 

in this region is not possible.
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4.6 Motion in arbitrary potential Field

Which is not possible therefore the

body will turn back on 𝑟1and 𝑟2.



Region for 𝒓 > 𝒓𝟑

Turning point is 𝑟 = 𝑟3.

The particle approaches to 𝑟3 and rebounded.

ሶ𝑟 = escape velocity; the initial velocity required to

escape from the potential field 𝑉𝑒𝑓𝑓.

𝐸 = 𝑇 + 𝑉𝑒𝑓𝑓 = 0 ⇒ 𝑇 = −𝑉𝑒𝑓𝑓

ሶ𝑟 =
2

𝜇
−𝑉𝑒𝑓𝑓 (4.6.3)
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4.6 Motion in arbitrary potential Field

The nature of motion of the particle discussed earlier with help of

arbitrary potential will help to understand the nature of orbit.



𝐹𝑟 =
𝑘

𝑟2
(4.7.1)

⇒ 𝑉𝑟=
𝑘

𝑟
(4.7.2)

Therefore, the effective potential 𝑉𝑒𝑓𝑓 is given by

𝑉𝑒𝑓𝑓 =
𝑘

𝑟
+

l2

2𝜇𝑟2
(4.7.3)

The value of “k” depends on the nature of physical problem. For example,

i) gravitational force between two spherical bodies of mass m1 and m2

4.7 Motion in Inverse Square Law Force Field

𝑘 = −𝐺𝑚1𝑚2 (4.7.4)

ii) Electrostatic force

𝑘 =
𝑞1𝑞2

4𝜋𝜖𝑜
(4.7.5)

The nature of the orbit depends on sign of “k”. If k > 0 ⇒repulsive & for k < 0 ⇒ attractive.
14



If effective potential Veff is plotted against “r” for different values of “k” and “L” following curves are

obtained.
Case I 𝒌 > 𝟎, l > 𝟎

Case II 𝒌 > 𝟎, l = 𝟎

Case III 𝒌 = 𝟎, l > 𝟎

Case IV 𝒌 < 𝟎, l > 𝟎

Case V 𝒌 < 𝟎, l = 𝟎

These curves can be very helpful in

understanding the nature of the orbit.

A body with total energy E > Veff

approaching to the centre of force from

infinite distance. The particle will be

deflected as given in figure.
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4.7 Motion in Inverse Square Law Force Field



(1)For E1 at r = r1

𝐸1 = 𝑉𝑒𝑓𝑓 = −
𝑘

𝑟
+

l2

2𝜇𝑟2

Turning point at 𝑟 = 𝑟1.

Motion represents scattering, where body is not

bound to the centre and deflected away.

(ii) For E2 = 0

Possible roots are 𝑟 = 𝑟1
′ and 𝑟 = ∞. The particle

moves away & radial velocity fall continuously.

(iii) For E3 < 0

Two roots 𝑟 = 𝑟2 and 𝑟 = 𝑟3 of equation are real and

distinct.
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4.7 Motion in Inverse Square Law Force Field



(iv) For E4 = 𝑽𝒆𝒇𝒇,

which is tangent of the potential energy curve.

Therefore
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
= 0

⇒
𝑑𝑉

𝑑𝑟
−

𝑙2

𝜇𝑟3
= 0

⇒ 𝐹𝑟 = −
𝑑𝑉

𝑑𝑟
= −

𝑙2

𝜇𝑟3
= −𝜇𝑟 ሶ𝜃2

⇒ 𝐹𝑟 = −
𝜇𝑟2 ሶ𝜃2

𝑟
= −

𝜇𝑣2

𝑟

Thus 𝐹𝑟 is equal to the centrifugal force required to maintain

circular motion of the body around the centre of the force.

Thus 𝐹𝑟 is centripetal force that maintain the orbit.
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4.7 Motion in Inverse Square Law Force Field



Solution: Let us consider a particle of mass “𝜇” and position vector “𝒓”.

Since 𝑢 =
1

𝑟
⇒ 𝑟 =

1

𝑢

𝑑𝑟

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝑡
−

1

𝑢2
𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሶ𝑟 = −𝑟2 ሶ𝜃
𝑑𝑢

𝑑𝜃
⇒ ሶ𝑟 = −ℎ

𝑑𝑢

𝑑𝜃

Therefore, 𝑣2 = ሶ𝑟2 + 𝑟2 ሶ𝜃2

⇒ 𝑣2 = −ℎ
𝑑𝑢

𝑑𝜃

2
+

1

𝑢2
ℎ𝑢2 2= ℎ

𝑑𝑢

𝑑𝜃

2
+ ℎ2𝑢2

⇒ 𝑣2 = ℎ2
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 (4.9.1)

4.9 Show That: a) 𝒗𝟐 = ሶ𝒓𝟐 + 𝒓𝟐 ሶ𝜽𝟐 = 𝒉𝟐
𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐

b) Using results from part “a” also prove that the conservation of energy equation will be

𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐 =

𝟐 𝑬−𝑽

𝝁𝒉𝟐
if 𝒖 =

𝟏

𝒓
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Since 𝐸 = 𝑇 + 𝑉 ⇒ 𝑇 = 𝐸 − 𝑉

⇒
1

2
𝜇𝑣2 = 𝐸 − 𝑉

⇒
1

2
𝜇ℎ2

𝑑𝑢

𝑑𝜃

2
+ 𝑢2 = 𝐸 − 𝑉

⇒
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 =

2 𝐸−𝑉

𝜇ℎ2
(4.9.2)

Eq. (4.9.1) and Eq. (4.9.2) are as desired.
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Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic spiral orbit given by

𝒓 = 𝒌𝒆𝜶𝜽, where “k” and “𝜶” are constants. Also find value of 𝜽 𝒕 and 𝒓 𝒕 . Also find Energy of the orbit.

Solution. Since we have verified that

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 1
𝑢

𝑙2𝑢2

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2
(1)

Now using

𝑟 = 𝑘𝑒𝛼𝜃⇒
1

𝑟
=

1

𝑘
𝑒−𝛼𝜃

Differentiating Twice with respect to θ

𝑑2

𝑑𝜃2
1

𝑟
=

𝛼2

𝑘
𝑒−𝛼𝜃

⇒
𝑑2𝑢

𝑑𝜃2
=

𝛼2

𝑘
𝑒−𝛼𝜃 = 𝛼2𝑢 (2)

Putting value of u and
𝑑2𝑢

𝑑𝜃2
in equation 1

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2
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⇒ 𝛼2𝑢 + 𝑢 = −
𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝑓 𝑟 = −
𝑙2

𝜇𝑟3
𝛼2 + 1 (3)

Eq. 3 represents the force responsible for motion.

Now the central potential responsible for the motion of the particle will be

𝑉 = 𝑓׬− 𝑟 𝑑𝑟 = −
𝑙2

2𝜇𝑟2
𝛼2 + 1 (4)

Total energy of the system is

𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉 (5)

Now

ሶ𝑟 =
𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡

ሶ𝑟 =
𝑑𝑟

𝑑𝜃
ሶ𝜃 =

𝑑𝑟

𝑑𝜃

𝑙

𝜇𝑟2

ሶ𝑟 = 𝑘𝛼𝑒𝛼𝜃
𝑙

𝜇𝑟2
= 𝑟𝛼

𝑙

𝜇𝑟2

ሶ𝑟 = 𝛼
𝑙

𝜇𝑟
(6)
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Now 𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉

⇒ 𝐸 =
1

2
𝜇

𝑙𝛼

𝜇𝑟

2
+

𝑙2

2𝜇𝑟2
−

𝑙2

2𝜇𝑟2
𝛼2 + 1

⇒ 𝐸 =
𝑙2

2𝜇𝑟2
𝛼2 + 1 −

𝑙2

2𝜇𝑟2
𝛼2 + 1 = 0 (7)

Eq. 7 gives the total energy of the system. Zero value of the system represent a bound system.

Now we will determine of 𝜃 𝑡 and 𝑟 𝑡

Since ሶ𝜃 =
𝑙

𝜇𝑟
⇒

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑟

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑘2𝑒2𝛼𝜃
⇒𝑒2𝛼𝜃𝑑𝜃 =

𝑙

𝜇𝑘2
𝑑𝑡

Integrating both sides we get
𝑒2𝛼𝜃

2𝛼
=

𝑙𝑡

𝜇𝑘2
+ 𝐶

𝑒2𝛼𝜃 = 2𝛼
𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒ 𝜃 𝑡 =

1

2𝛼
ln 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 (9)

Now 𝑟 = 𝑘𝑒𝛼𝜃

⇒
𝑟

𝑘
= 𝑒𝛼𝜃 ⇒

𝑟2

𝑘2
= 𝑒2𝛼𝜃

⇒
𝑟2

𝑘2
= 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒ 𝑟 𝑡 = 2𝛼𝑘2

𝑙𝑡

𝜇𝑘2
+ 𝐶 (10)


